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Abstract Optimal paths in disordered systems are studied using WO different models 
interpolating between weak and infirutely strong disorder. In one case, exact numerical methods 
are used to sNdy the optimal path m a  two-dimensional square lattice whereas a renormalizadan- 
group analysis is employed on hierarchical lanices in the other. The scaling behaviour is 
monitored as a function of panmeters that tune the strength of the disorder. Two distinct 
scenarios are provided by the models: in the first. fractal behaviour occws abruptly as soon as 
the disorder widens. while in the other it emerges as a limiting case of a self-affine regime. 

The effect of disorder on critical phenomena is a subject of considerable interest. Well 
studied problems in this context are the geometry of domain walls in weakly disordered 
ferromagnets [I], directed polymers in random media [Z] and the dynamics of growing 
interfaces governed by the Kardar-Parisi-Zhang (Kpz) equation [3]. Strikingly, these 
problems are related to each other in two dimensions via the Burgers equation [4]. Unlike 
the weak disorder case [Z], there are many physical situations, for example, transport in 
amorphous semiconductors at low temperatures [SI, electrical conduction and fluid flow in 
porous rocks [6] and the magnetic properties of doped semiconductors [7], in which the 
physical attributes have a broad distribution. An approximation that is operationally useful 
in such cases is to assume that the distribution is so wide that the sum of several variables 
chosen from the distribution is simply equal to the largest variable. This strong disorder 
limit can also be realized in a spin model in which the coupling magnitudes scale nonlinearly 
with volume [8,9]. Recently, it was shown 191 that, in this limit, the self-affine domain 
walls become fractally rough with significant overhanging configurations thus leading to a 
new universality class. 

In this paper we address the issue of the crossover between the limits of weak and 
strong disorder. We show that, depending on the mechanism of tuning of the disorder, one 
obtains two distinct crossover scenarios: the first in which the strong disorder limit appears 
as soon as the disorder widens and the second in which it emerges as a limiting case of a 
self-afiine regime. 
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We first describe an optimization problem that is exactly equivalent to the domain wall 
problem. Consider a lattice made up of bonds of random strength. For concreteness, let us 
assume that the strength of the bond is equal to the time taken to travcrsc it. We seck the 
optimal path that minimizes the total travel time from one point to another. In the weak 
disorder limit the overhangs (or backward going segments) are not significant and the path is 
known to be self-affine 141. The total path length I spanning adistance L scales as I - LDf, 
with 0, = 1, whereas the width of the path (or the magnitude of the transverse excursions), 
W ,  scales as W - LX, Further, the RMS fluctuations in the travel time distribution scale 
as A E  - Lo with x = (1 + 0 ) / 2 .  In D = 2, it is known exactly [ I ]  that x = 3 and 
o = 4. In the strong disorder limit, the traversal time-space has an ultrametric structure. 
The minimum time for travelling from A to B (the path between A and B and all subpaths 
are optimally chosen) C ( A ,  E )  satisfies the relation C(A,  E )  < Max(C(A, X ) ,  C(X, E ) )  
for any arbitrary X .  In this limit, it was shown numerically [9] that 0, % 1.2 and x % 1 
in D = 2. The optimal path is now self-similar. 

We now turn to our numerical analysis in D = 2. We treat a random bond king model 
at T = 0 (this is equivalent to the travel time optimization problem, but on a dual lattice) on 
a square lattice with the Hamiltonian H = - Ji,o;u, where nearest-neighbour spins U, 

and uj are coupled by an exchange coupling J , j .  In order to force an interface we impose 
antiperiodic boundary conditions in one direction and periodic boundary conditions in the 
other. Provided that the Jjj's  are all ferromagnetic, this optimization problem maps directly 
onto the problem of finding the maximum flow in a network with capacity constraints on the 
edge [IO]. In order to obtain the exact ground state, we used a max-flow algorithm devised 
by Goldberg [ I l l ,  which has a running time of O(n3) for a graph with n connections, 
while requiring less storage than other parallel max-flow methods. For a given distribution 
of random bonds, we calculated the optimal interfacial position and measured I and the 
RMS I.V. We used lattices of size L x L with L varying in size from 8 to 96 and we averaged 
our results over 10000 realizations for the smaller systems and IO00 for the largest. 

The exchange couplings were chosen to be 

(1) 
where y is a random number chosen uniformly in the interval (0 , l )  and c 2 1 is a parameter 
that controls the strength of the disorder. Figure 1 shows typical interfaces generated in a 
L = 96 system for c = 1, 1.01 and 1.1. For c = 1, the interface is self-affine. For any 
c > 1, the interface crosses over from self-affine to fractal at sufficiently long length scales 

I .  - ( Ll I-: , , - Y  c ) 

Figure 1. Domain wails in a two-dimensional random 
king ferromagnet (L = 96) with the exchange couplings 
given by (1) for the lhree values of c indicled. C=1.0 
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Firmre 2. Avenee lacrral width as a function of 

ferromagnet for the values of c as shown. 

Figwe 3. Average interface length, corresponding 
to the data of figure 2. 

with the crossover occurring earlier for larger values of c (figures 2 and 3). In the weak 
disorder limit (c = l),  x = 0.66 4 0.01 in accord with the exact results [l], whereas at 
c = 1 . 1 ,  Or = 1.21 f 0.03 in agreement with the results of [9]. Note that, in the above 
analysis, the random distribution of bond strengths has been chosen to be dependent on the 
size of the system. 

In order to obtain more insight into this behaviour, we turn to an analysis of hierarchical 
lattices [I21 shown in figure 4. The hierarchical lattices are constructed in an iterative fashion 
by replacing each bond of the unit by the full unit in each step of the recursion. Each of 
the bonds represents both the traversal time y and the effective path length, I .  In practice, 
a pool of typically lo5 bonds is constructed. m members of the pool (the values of m are 
shown in figure 4) are picked at random and combined to give one new member of the new 
pool. The process is repeated until a new pool of lo5 bonds is produced. (The pool size is 
large enough so that correlations are not significant for the number of iterations considered.) 
This corresponds to one iteration. For the starting pool, the traversal time, yi, is picked 
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MODEL m D 
A -- 2 1 

D -0- 4 ln4/ln3 
Figure 4. Hierarchical latiices considered in this study. System 
D was introduced in [U] to model Ihe backbone of a percolation 

In5/lnZ cluster. D repre.ienls the effective dimensionality of the 
hierarchical lanice. 
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Fiyre 5. VariJlion of AE as a funccion of the iteration 
index for the hierarchical lattice E. The values of (I ax 
indicated on the figure 

Figure 6. Variation of the average path length for 
LI = I ,  50 and ca. The latter is indicated by the broken 
line corresponding to an exponent of 1.15. The dotted 
line corresponds to the analytically calculated exponent 
D, = 1.18. 

randomly and uniformly from the interval 0-1. The corresponding path length is 1. The 
total trave1 time for traversing a ID sequence of bonds characterized by yt ,  yz. . . . , yp is 
taken to be 

Note that when CY = 1, the case considered in [I31 for model B, this leads to i = yi. 
whereas for CY = CO, 7 = max[yl, yz ,  . , . , yp]. Thus the parameter o( provides a convenient 
way for tuning from the usual definition to the strong disorder limit. For a given hierarchical 
model, all possible paths are considered and the effective travel times are calculated and the 
minimum overall time is selected. In cases. where there is a tie (which is common when 
E = CO), it is broken by ensuring that all sub-paths are optimal as well. After the best path 
is determined, the length of that particular path is recorded. Thus, for model E (figure 4), 
an entry of the new pool y is given by 

(3) 

and I = I I  + I,, or I = 11 + Is + Id, or I = 11 + I4, or I = I 3  + Is + h depending 

.Y t / m  y = MinKy? + ~3~’“. (YP + Y: + YT)~’~. (Y: + ~ 4 )  ’/“,Cv,”+r;+Yz) I 
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Figure 7. The fixed probability distnbution of c for 
U = I .  6 is defined as ( y  - (y))/aJ, where ay is 
the dispersion of y.  The daa points correspond to 
iterations 12, 16 and 20. 

Figure 8. The fixed probability distribution at U = 03 

for A = ( I  - { f ) ) /q ,  where U, is the dispersion of 
I .  The daa points correspond to iterations 12, 16. IS 
and 20. 

Table 1. Exponents w and D/ obtained for several hierarchical lattices. The malytic predictions 
for w (a = m) based on a connection to directed percolation (see the text) are also shown. 

w Dl 
Svstem CI = I CI = 1.2 u=Ca - I l v n  C I = l  a = 1 . 2  a = m  

I ,, 
A 0.5 i0.01 0.33310.003 -1.Oi0.06 -1 1 I 1 
B 0.30iO.Ol 0.1310.01 -0.60f0.01 -0.612 1 1 I 
C 0.2110.01 0.0410.01 -0.81f0.04 -0.815 I I I 
D 0.45i0.02 0.29*0.01 -0.63i0.06 -0.631 1 1 1 
E 0.3010.01 0.13i0.01 -0.6910.0l -0.700 1 1 1.15*0.003 

on which term is the minimum. The probability distributions and their characteristics are 
readily obtained from the values of the members of the pool. Convergence to a scaling 
regime is obtained within a few iterations. A summary of our results is shown in the table 
(see figures 5-8 for results for model E). The general result is that w varies continuously 
as a function of a. For model E, Dl = 1 asymptotically for all CY e CO whereas 01 = 00 
leads to Of = 1.15 -+ 0.003. However, the region CY e CO corresponds to a regime of an 
windependent self-affine geometry (Of = 1). Note that non-trivial fractal behaviour of the 
optimal path is only possible for model E, since for the other models all distinct paths have 
exactly the same length and thus allow only one geometry. 

Another interesting point of the model on a hierarchical lattice stems from the fact that 
it allows one to test some interesting issues relevant to the strong disorder regime itself. 
A key open problem is whether the 0, in the fractal regime is an independent exponent 
or related to any of the dimensions arising in the standard percolation problem. One of 
the candidates is the hull fractal dimension, which in 3D has a value very close to the 
numerically measured [9] fractal dimension of the optimal surface in the strong disorder 
limit. 

A simple analytic estimate for Of in the 01 = 00 limit for model E can be obtained by 
approximating the large length scale behaviour to be the same as that of a single unit of five 
bonds. This amounts to an assumption that the probabilities of the relative arrangements 
of the strengths of bonds within a given cell are not altered by the condition that the 
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cell considered is one through which the optimal path has to pass. On carrying out an 
exact enumeration of all possible rank orderings of the five bonds, one readily obtains 
D, = D, = I n ( z ) / l n 2  x 1.18 which is close but not equal to the numerical estimate. 
Strikingly, by similar methods, the fractal dimension of the percolating cluster hull can 
also be shown to be D, as well. This is done by treating the bond percolation problem. 
Denote the probability of bond occupation by p and performing the RG transformation, we 
find p' = 2ps - 5p4 + 2p3 + 2pz with the critical fixed point value pc  = p' = i. We 
set p = pc on an infinite lattice and consider the number of hull bonds in such cells that 
rescale to just one hull bond to obtain our estimate. To our knowledge, this is the first 
determination of the hull dimension on a hierarchical lattice or in the context of real-space 
renormalization-group methods. While this coincidence is quite remarkable, it is possible 
that the two dimensionalities are generally not the same, since the optimal path D, calculated 
numerically for both triangular and square lattices in D = 2 is smaller than that of the hull 
of the percolation cluster. 

We now turn to an analytic calculation of w in the strong disorder limit (a = 00) on 
hierarchical lattices. We begin by noting that on the lattices considered, directed percolation 
and ordinary percolation are one and the same. According to the Roux-Zhang argument [ 141, 
the energy (or equivalently the travel time) associated with the optimal path in the directed 
case is exactly the threshold for directed percolation, pc, in the infinite-size limit. The 
energy fluctuations for finite size L ,  A E ,  scales as 

(4) A E  w [ p  - pcI - ( - l / y I  - L-'l"l 

where is the correlation length. We thus obtain 

(5) 
1 

VI1 
o(a = 03) = 

In order to obtain q, we consider the real-space renormalization-group transformation 
p' = Rb(p), where b is the scale factor. The fixed point p" = Rb(p*) represents the 
energy of the optimal path whereas 

lnb I P=p. 
(6) 

1 Inap'lap -=  
Vli 

The values of -l/ull are presented in the table and are in excellent agreement with the 
numerical values of o(a = 00). 

In order to assess the generality of our results we have also studied the scale-dependent 
distribution (1) on the hierarchical lattice E with 01 = 1. As on the square lattice, we 
find that for any c > 1, the interface crosses over from self-affine to fractal (figure 9). 
We have also studied the model defined by (2) in the context of directed polymers in a 
random medium using a transfer matrix method and the random-bond king model on a 
square lattice. In both cases we find an o that depends on a. Indeed, assuming that the 
distribution of energies in the a = I case is Gaussian with a mean value that scales as L X m  
and a width scaling as LXw, it is straightforward to show that 

w(ff) = x u  - x m ( 1 -  l / a )  (7) 
with xm = 1 and x,,, = w ( a  = I). This result is valid for any 01 .c cu and exhibits a 
discontinuity at a = w. 

In summary, we have presented two different model calculations of the crossover from 
the weak-disorder self-affine optimal path to the strong disorder fractal optimal path. In 
the ferromagnetic domain wall problem on a square lattice, the width of the distribution 
was linked to the size of the system. The asymptotic geometry of the wall is modified 
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Figure 9. Variation of the avenge path length for the 
hierarchical lanice E in the case when the couplings (bond 
energies) correspond to (I). The values of the e-parameter 
are indicated. The pool consists of 500 MO bands. For the 
data point corresponding to Nj iterations, the couplings in 
the inirial pool are given by yc'. where I = SN; (y - 0.5) 
and y is a random number between 0 and I .  The initial 
bond lengths are all equal to 1. The effective fractal 
dimensionalities D, are indicated. 

abruptly in that case From self-affine to fractal as soon as the control parameter c >. 1. 
In the case of the hierarchical lattices, the path remains self-afline for a whole range of 
values of the parameter 01. The geometry of the optimal paths studied is directly linked to 
the experimentally accessible scale-dependent tortuosity of disordered systems. Our studies 
address the crossover of the critical behaviour on turning from a regular cost space to an 
ultrametric one. 
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